1 Introduction
The global financial crisis, which began in 2008, led to a significant deterioration in the fiscal positions of many governments, with a number of advanced economies running substantial budget deficits in the years that followed. Because much of the loss of output associated with the financial crisis is judged to be permanent, this has led to governments running persistent structural deficits - those expected to remain once the economic cycle has run its course and output has returned to its steady-state growth path.
Many governments have responded to the deterioration of their fiscal positions by planning large consolidations - usually a mix of spending cuts and tax increases, with most balanced towards the former. A natural question to ask is to what extent might these plans reduce aggregate demand in the economy and, in doing so, slow its cyclical recovery? Besides explaining the origins of the financial crisis and the implications for policy settings, answering this question has become one of the major focuses of macroeconomists in recent years.
Estimates of the size of the fiscal impact multiplier range widely, as do the techniques used to assess them. Estimation methodologies tend to fall into two categories: the structural vector autoregression (SVAR) approach, pioneered by Blanchard and Perotti (2002), and dynamic stochastic general equilibrium (DSGE) modelling, as recently applied by Davig and Leeper (2011). The former approach draws inferences from statistical relationships identified in the data. To reveal the underlying relationships, a number of assumptions about the way the economy functions are applied during the estimation process. The DSGE approach involves the specification of a model, derived from economic theory, and the calibration of that model's parameters either via estimation or through the application of judgement. The size of the impact multiplier is then derived from the simulation properties of the model.
During the financial crisis, the IMF (2008) published estimates of the size of fiscal impact multipliers for a number of advanced economies, which averaged around 0.5. Using a DSGE approach, Mountford and Uhlig (2002), also find the multiplier to be around 0.5. While the original SVAR estimate of Blanchard and Perotti (2002) is consistent with an impact multiplier of around unity. Another approach, recently applied by Blanchard and Leigh (2013), has been to decompose forecast errors made during periods of fiscal retrenchment into the part related to exogenous shocks and the part related to the assumed fiscal impact multiplier. The estimate associated with this method is consistent with a fiscal impact multiplier of around unity.
Ilzetzki et al (2011) apply the SVAR methodology using a large data set which includes a number of economies with different characteristics. They find that the multiplier depends critically on the degree of development, the monetary policy framework and the degree of openness. Crucially, their estimate of the multiplier is not significantly different from zero for countries with a flexible exchange rate and they find the multiplier is smaller for more open economies.
Corsetti et al (2012) also find that the monetary policy and exchange rate regime are important in determining the effect of fiscal policy. But the exchange rate is found to appreciate in response to a positive government spending shock. In most models, the exchange rate plays a stabilising role by boosting output at times of fiscal tightening by bringing about a fall in the relative price of domestically-produced goods. The finding calls into question the assumed transmission mechanism and role of the exchange rate. New Zealand is a small open economy with a flexible exchange rate. Taking an SVAR approach, Parkyn & Vehbi (2013) find a statistically significant impact multiplier of 0.3 associated with a change in government spending, rising to 0.6 when debt dynamics are excluded.
The only conclusion one can safely draw from the expansive literature on the subject is that the size of fiscal multipliers are extremely uncertain. But policy makers need to have some view about the likely effects of discretionary fiscal policy and what the risks surrounding it are. With this in mind, I ask 'Under what conditions might the impact of a fiscal tightening be bigger or smaller?'
To answer this question I estimate a small, reduced-form model of the New Zealand economy, using Bayesian methods. I then conduct fiscal policy simulations by varying a number of the key model parameters and assess the output effects using two metrics. The first is the fiscal impact multiplier, which represents the degree to which a fiscal consolidation might slow GDP growth and widen the output gap.[1] But to explore the broader effect on social welfare, I also consider the cumulative output loss associated with a fiscal tightening. This takes into account both the degree to which a consolidation might reduce output and the time it takes to return to its steady state growth path. The intention is to give a quantified estimate of the risks associated with fiscal consolidations based on the degree of uncertainty about the way the New Zealand economy functions.
The remainder of this paper is structured as follows. I discuss the choice of modelling methodology in Section 2, before explaining the theoretical underpinnings governing the dynamics of the model. Section 3 is concerned with the estimation of the model, including the choice of priors. Section 4 sets out the key findings of the fiscal consolidation simulations before Section 5 assesses the implications of the results for policy making. Section 6 concludes.
Notes
- [1]In this paper the fiscal impact multiplier is defined as the change in the output gap over a period of one year associated with a 1 per cent of potential GDP fiscal tightening.
